
 - 0 -

Project Registration Number: WZ1096

COMPLETE DOCUMENTATION FOR THE
HOME ENERGY MONITOR INTERFACE

Table of Contents

TOPIC page .

Project Description .

• General Description of Project. 1 - 2

Hardware / Software Details .

• Real-Time AC Voltage measurements. 3 - 6

• Real-Time AC Current measurements. 7 - 8

• WIZnet WIZ550io Ethernet Module. 9 - 10

• Exosite portal web site. 11 - 20

• Arduino Uno Board. 21 - 22

Operational Details .

• Overview of project operation. 23 - 25

• Photos of the completed assembly. 26 - 27

Project Hardware Information

• Hardware Parts List 28

• Completed Project Schematic 29

 - 1 -

Project Description: (General Description of Project)

This project measures real-time AC voltage and AC currents of an entire

home. The data values calculated utilizing these real-time measurements are

kilowatts (KW) and kilowatt-hours (KWH) in addition to the cost of using

electricity. The measurements and calculated data values are sent to the Exosite

Portal web site for viewing and data logging.

The components used in this project are installed into an active main AC

voltage load center, as a result care must be taken when installing these

components. The block diagram below illustrates the connections between the

project’s main components.

A 9vdc power supply provides power to the Arduino Uno board which

converts this into 5vdc and 3.3vdc power. The 3.3vdc is used to power the

WIZnet WIZ550io Ethernet Module and the 5vdc provides power for the status

LEDS. An AC Voltage Transformer (VT) and AC Current Transformers (CT) are

connected to the analog inputs of the Arduino Uno board to allow measurement

of single phase voltage and AC currents. The WIZnet WIZ550io Ethernet Module

communicates with the Arduino Uno board using the SPI communication protocol.

The data is sent to the Exosite Portal web site using the WIZ550io

Ethernet Module as a gateway to the internet. An ethernet cable is run to the

main ac voltage load center for this purpose. With this connection, the home

energy usage can be accessed anywhere a PC can connect to the internet.

Block Diagram:

WIZ550io
Ethernet
Module

Arduino
Uno

Board

AC Voltage
Transformer

AC Current
Phase “A”

Transformer

AC Current
Phase “B”

Transformer

+9vdc
Power Supply

Internet

Exosite Portal

web site

Status LEDS
Ready LED

3.3vdc

SPI

Ain

Ain

Ain

Dout

 - 2 -

Photo 1 depicts the completed board. All components are wired together

using a breadboard and jumper wires. The board is placed inside the main ac

voltage load center. The following connections are required to make the board

functional: Phase “A” and “B” CTs, an AC VT, 9vdc power supply and an ethernet

cable. LEDs connected to the Arduino UNO board will turn “on” indicating a good

connection/status of the transformers. The LED connected to the WIZ550io

ethernet module will turn “on” when the module is ready and operational.

To Phase “A”
CT

To Phase “B”
CT

To VAC
Transformer

Ethernet
Connection

Home Energy Monitor

“Ready” LED

WIZ550io

“A” LED
“B” LED
“VAC” LED

To 9vdc P/S

Photo 1:
Completed board showing component layout and wiring connections that need to be made.

 - 3 -

Hardware / Software Details (Real-Time AC Voltage measurements)

The ac voltage reading is measured using a VT which has a 12vac output

that is read by the Arduino board analog input. The VT is plugged into an AC

outlet which measures the AC voltage of only 1 phase. See Circuit Diagram 1

below for wiring details.

The AC voltage waveform is measured by taking precise timed samples of

the entire waveform. The highest reading is then determined to produce an

accurate AC voltage reading. But before the waveform can be accurately

measured, the AC zero crossing must be detected to ensure the full waveform is

being properly detected and measured. See Code Listing 1 for the zero crossing

routine and Code Listing 2 for the voltage measuring software routine.

//===

void VAC_Zero_Cross()

//===

{

 st=false; // Indicator to exit while loop

 if ((VAC_present) & (loop1))

 {

 //Waits for the waveform to be close to 'zero' (500 adc)

 while(st == false)

 {

 delayMicroseconds(100);

 VACreading0 = analogRead(sensorPinA0);

 //check its range.

 if (VACreading0 = 511)

Circuit Diagram 1:
Hardware wiring connections of the AC Voltage Transformer to the Arduino Analog input.

Code Listing 1:
Routine to measure the AC waveform zero crossing.

 - 4 -

 {

 st=true;

 }

 }

 }

 loop1=true;

 // VAC Present indicator LED

 if (VAC_present)

 {

 digitalWrite(VAC_ledPin, 1);

 }

 else

 {

 digitalWrite(VAC_ledPin, 0);

 }

}

//===

void Measure_VAC()

//===

// Measure AC Voltage. (0-120vac = 0-5v output to ADC)

// 100 measurements every 20 milliseconds.(0.02/100=200usec/sample)

//---

{

 VAC_present = false;

 for (LP1=0; LP1<100; LP1++)

 {

 delayMicroseconds(200);

 VACreading = analogRead(sensorPinA0); // Read AC voltage.

 if (VACreadingHI < VACreading) VACreadingHI = VACreading;

 }

//---

// Measure AC Voltage.

//---

 if (VACreadingHI < 505) VACreadingHI = 505;

 RT_VAC_Reading = VACreadingHI;

 if (RT_VAC_Reading > 700)

 {

 VAC_present = true;

 }

 if (VAC_present == false)

 {

 RT_VAC_Reading = 511; // NO VAC

 }

 VACreadingHI = 0;

}

To determine if the analog input was in fact measuring the waveform

accurately, another routine was used to send the readings to a PC serially and

then using Microsoft excel to plot the values. See Code Listing 3 below for the

waveform measurement.

Code Listing 2:
Routine to measure the AC waveform to determine an actuate AC voltage reading.

 - 5 -

//===

void Waveform_VAC()

//===

{ // Get 25 AC voltage samples.

 if (VAC_present)

 {

 for (LP1=0; LP1<25; LP1++) // Loop 25 times

 {

 delayMicroseconds(700); // delay between

sampling.

 VACreading = analogRead(sensorPinA0); // Read AC voltage.

 VA_READING[LP1]=VACreading; // LP1 -> 0-24.

 }

//===

// Send AC Voltage values to trend on PC via serial port.

//---

 for (LP1=0; LP1<25; LP1++) // Loop 25 times.

 {

 Serial.println(VA_READING[LP1]); // Send data to PC.

 }

 }

}

The resulting plot (plot 1) shows that the waveform is being measured

correctly and accurately. You can see from the data points collected that a

uniform measurement is being taken throughout the waveform. As for the AC

voltage measurement routine, 100 measurements are taken to accurately

determine the AC voltage. The AC voltage waveform routine is only taking 25

measurements to get a sense for how accurately the waveform is actually being

measured. Using a DC bias (2.5v level shifter) for the analog input, the sine wave

will oscillate around 2.5vdc and remain positive. This will enable measurement of

the entire AC voltage waveform as well as the AC current waveform. The 10 bit

analog input at full range has 0-1024 ticks. With the DC bias (voltage divider)

incorporated will only use 512 ticks. Consequently, the entire waveform is

represented from 512 to 1024 ticks of the ADC. Therefore, the full range for the

120VAC measurement will represent 512 ticks of the ADC.

Code Listing 3:
Routine to measure the AC waveform by taking 25 samples and sending them serially to a PC
to be plotted.

 - 6 -

VAC Waveform

0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17 19 21 23 25

Samples

D
A

C
 v

a
lu

e
s

VAC

.

Plot 1:
This shows that the analog input is measuring the AC waveform correctly and
accurately . A special feature of this project is that it will take 100
measurements per sampling of the AC voltage and AC currents to obtain the
accurate readings. The waveform above is made with sampling only 25 AC
voltage readings. This was used during the debug phase of the project.

 - 7 -

Hardware / Software Details (Real-Time AC Current measurements)

The AC current of two phases are measured. The CTs used are rated at

0-200 amperes and produce 33ma per ampere. These signals are wired to the

Arduino board analog inputs. See Circuit Diagram 2 below for wiring details.

The current waveform is measured in the same manner as the voltage

waveform. As with the voltage measurement, the full range for the 200 AC

current measurement will represent 512 ticks of the ADC. See Code Listing 4 for

the current measuring software routine.

//===

void Measure_AMPS_A()

//==

// Measure AC Current. (0-200amps = 0-5v output to ADC)

// 100 measurements every 20 milliseconds.(0.02/100=200usec/sample)

//---

{

 if (VAC_present)

 {

 for (LP1=0; LP1<100; LP1++)

 {

 delayMicroseconds(200);

 AMPreading = analogRead(sensorPinA1); // Read AC phase "A" amps.

 if (AMPreadingHI < AMPreading) AMPreadingHI = AMPreading;

 }

 if (AMPreadingHI < 550)

 {

 AMPreadingHI=511;

 digitalWrite(A_AMP_ledPin, 0);

 }

 else

 {

Circuit Diagram 2:
Hardware wiring connections of the AC Current Transformer to the Arduino Analog input.

Code Listing 4:
Routine to measure the AC waveform by taking 25 samples and sending them serially to a PC
to be plotted.

 - 8 -

 digitalWrite(A_AMP_ledPin, 1);

 }

 RT_A_AMP_Reading = AMPreadingHI;

 AMPreadingHI=0;

 }

}

The CTs are installed by clipping them around the cables entering the

main AC load center from the power company. See Photo 2 below for CT

connections. The CTs used here have large openings to allow clipping around

the incoming cables. If other CTs are used be sure to measure the diameter of

these cables.

WARNING

Be Very Careful while working inside the energized
main AC load center.

Electrical shock can occur and could be deadly.
Proper electrical personal protective equipment must be worn.

Photo 2:
Current Transformers connected around incoming 120VAC
power cables inside the load center.

Phase “A” CT

Phase “B” CT

 - 9 -

Hardware / Software Details (WIZnet WIZ550io Ethernet Module)

This project uses the WIZ550io Ethernet Module as a gateway for sending

energy usage information to the internet. The WIZ550io will automatically obtain

an IP address which makes it straightforward to set-up and use. See

Code Listing 5 for displaying the network information from this module using your

PC serial port.

//===

// Initialize Ethernet communication.

//===

 Ethernet.begin();

 delay(2000);

// read IP Address on WIZ550io. (ex. 192.168.15.104)

// read SUBNET Address on WIZ550io. (ex. 255.255.255.0)

// read DNS Server IP Address on WIZ550io. (ex. 192.168.15.1)

// read GATEWAY IP Address on WIZ550io. (ex. 192.168.15.1)

Serial.println(Ethernet.localIP());

Serial.println(Ethernet.subnetMask());

Serial.println(Ethernet.dnsServerIP());

Serial.println(Ethernet.gatewayIP());

The MAC address of the WIZ550io module will need entered which will be

unique to each project. The address can be found on the module board and is

entered in the macData variable below:

byte macData[] = {0x00, 0x08, 0xDC, 0x1D, 0x27, 0x6C};

This allows the module to connect to the internet and communicate with the web

site.

Communication between devices use the SPI protocol which is quick

enough to transmit and receive data to and from the web site. Make certain that

the MISO pins from these devices are connected together as well as the MISI

pins. If these are reversed which makes sense (out -> in and in <- out), the

module will not accept commands and will not be obvious what is occurring or

not occurring.

MISI � MISI

MISO � MISO

Code Listing 5:
Routine to read back WIZ550io network information.

 - 10 -

The module receives it’s power from the Arduino Uno board 3.3vdc output.

After the module successfully completes the on-board self test, the Ready LED

will turn “on” signifying it is ready to accept commands. See Circuit Diagram 3 for

wiring connection details.

Circuit Diagram 3:
Wire connections for the WIZnet WIZ550io Ethernet Module.
- Connect the ethernet cable from your ethernet switch and the module will be ready to use!

 - 11 -

Hardware / Software Details (Exosite portal web site)

The Exosite routine for sending and receiving data from the web site can

be seen in Code Listing 6 below. The cikData string from the Exosite web site will

need entered which is also unique to each project. The actual readings and

calculated value variables will need set-up at both ends for communication with

the web site to be successful.

===

* Configuration Variables

===

String cikData = "8cd2f79937f2b89bdcc2c6003304103db339704d"; //exosite

cikData

byte macData[] = {0x00, 0x08, 0xDC, 0x1D, 0x27, 0x6C};

//WIZ550io MAC.

// Use these variables to customize what data sources are read and

written to.

String readString = "CostperKWH";

String writeString = "rt-vac=";

String writeString1 = "rt-a_amp=";

String writeString2 = "rt-b_amp=";

String writeString3 = "rt-total_amps=";

String writeString4 = "rt-kw=";

String writeString5 = "rt-kwh=";

String writeString6 = "rt-kwh_cost=";

String returnString;

String rstr;

//---

// Send values to the exosite portal every 60 seconds.

//---

void Connect_with_Exosite()

{

 upt = upt + 1;

 // Perform 1 min Calcs

 Total_Amps = A_amp + B_amp;

 RT_KW = (VAC * Total_Amps) / 1000.0;

 RT_KWH = RT_KWH_prev + (RT_KW / 60.0); // update every 60 seconds.

 RT_KWH_prev = RT_KWH;

 // convert to long value for web site.

 VAC_L = VAC * 10;

 A_amp_L = A_amp * 10;

 B_amp_L = B_amp * 10;

 Total_Amps_L = Total_Amps * 10;

 RT_KW_L = RT_KW * 1000;

 RT_KWH_L = RT_KWH * 100;

 // Send Data to Web Site, update evey minute.

 if (exosite.writeRead(writeString+String(VAC_L), readString,

returnString)){}

Code Listing 6:
Routine to write/read data to/from Exosite portal web site.

 - 12 -

 if (exosite.writeRead(writeString1+String(A_amp_L), readString,

returnString)){}

 if (exosite.writeRead(writeString2+String(B_amp_L),

readString,returnString)){}

 if (exosite.writeRead(writeString3+String(Total_Amps_L), readString,

returnString)){}

 if (exosite.writeRead(writeString4+String(RT_KW_L), readString,

returnString)){}

 // update hourly

 if (upt >= Update_Int) // update web site every 60 minutes.

 {

 upt=0;

 if (exosite.writeRead(writeString5+String(RT_KWH_L), readString,

returnString)){}

 // convert string to float.

 rstr = returnString.substring(11);

 Cost_per_KWH_L = rstr.toInt();

 Cost_per_KWH = (float)Cost_per_KWH_L / 10000.0;

 RT_KWH_Cost = RT_KWH * Cost_per_KWH;

 // calculate the Cost per KWH.

 RT_KWH_Cost_L = RT_KWH_Cost * 10000;

 // Send "Cost per KWH" to Web site.

 if (exosite.writeRead(writeString6+String(RT_KWH_Cost_L), readString,

returnString)){}

 RT_KWH = 0;

 RT_KWH_L = 0;

 RT_KWH_prev = 0;

 RT_KWH_Cost = 0;

 RT_KWH_Cost_L = 0;

 }

}

 - 13 -

See Photo 3 below to begin the registration/set-up process for a free

developmental account on the Exosite Portal web site. Use the link below to go

to the sign up page:

https://support.exosite.com/registration

NOTE: To view the “Home Energy Monitor” Exosite Portal Web Site, follow the

link below: https://portals.exosite.com/views/3093978846/1232274221

Photo 3:

Exosite Portal Web Site – Sign Up for a new account.

 - 14 -

Data to be displayed must be entered on the Exosite Portal web site data

page and match corresponding variables in the Arduino code. See the example

below for setting up the real-time ac voltage reading to be displayed on the web

site. See Photo 4 (p.16) for all data variables used in this project.

1. Arduino Code:

String writeString = "rt-vac=";

// convert to long value for web site.

VAC_L = VAC * 10;

 // Send Data to Web Site, update every minute.

if (exosite.writeRead(writeString+String(VAC_L),readString,

returnString)){}

2. Exosite Portal Web Site Data Entry:

Example 1:

Display data on the Exosite Portal Web Site.
(1) Enter data variables in the Arduino code and (2) on the web site data
page, (3) Create a widget to display the data.

Enter:
1. Variable Name
2. Units
3. Format = string
4. Alias = rt-vac
5. Calculation: /10
6. Count = 1 data pt

 - 15 -

3. Exosite Portal Web Site Widget Entry: (Gauge)

 Click on the “Add Widget” button located at the top right of the web site.

Select the Gauge widget type. Enter the block title then click on the “Continue”

button. After the information is entered below click on the “Save” button.

Widget Set-Up Page:

Resulting Gauge Widget:

 - 16 -

From the real-time AC voltage and AC current measurements, KWs and

KWHs and the cost of using electricity can be calculated. The real-time AC

voltage and AC currents are measured every two seconds. These are used to

construct one minute average readings for calculating a hourly KWH as well as

the cost associated with the electric usage. The real-time readings and

calculations are sent to the Exosite Portal web site for viewing.

From the Exosite Portal web site:

• View one minute update of real-time readings (AC voltage, AC

current, Kilowatts).

• View hourly and daily KWHs and costs.

• Enter the cost per KWH from your electric bill to check if the power

company is accurately measuring your POWER USAGE!

For real-time AC measurements see Photo 5 for gauge widgets and

Photo 6 for KWH information.

Photo 4:

Exosite Portal Web Site Data Page – Set-Up Data Variables.

 - 17 -

See next page for Real-Time AC Measurement Charts.

Photo 5:

Exosite Portal Web Site - Real-Time Meters. (VAC, AC AMPS, KWs)

 - 18 -

 - 19 -

Photo 6:

Exosite Portal Web Site - KWH information

 - 20 -

It's very interesting to visualize how appliances operate and can detect if

one needs to be replaced or not working properly. This is a great project to learn

more about your power usage in the home and what appliances or people in your

household use the most electricity.

Washer/Dryer

From the chart one can observe the whole house air conditioning cycling

throughout the day (this is similar with heating but larger KWs are measured).

When the washer/dryer is running it is apparent from the cycling of the KWs in a

short period of time (this is similar with the dishwasher as well but with smaller

KWs measured). Also the small spikes indicated that the sump pump was

running. The water heater is unfortunately on a separate breaker and is not

included in these readings. Although, would be valuable in tracking hot water

usage.

Whole House AC
Sump Pump Running

 - 21 -

Hardware / Software Details (Arduino Uno Board)
The Arduino Uno Board is used as the interface between collecting real-

time power measurements and sending data to the web site. The board was

programmed using the Arduino software. See Photo 7 below for the Arduino

software application. During software development, the USB port was connected

to the board for easy software downloads. Troubleshooting was conducted by

sending serial commands back through the same USB port and using the serial

monitor program included with the application (located under tools drop down list).

The application is free for download. The project file loaded for this project is

named: wHEM.ino.

Photo 7:

Arduino software application is shown here with the wHEM.ino program
loaded.

 - 22 -

The Arduino Uno Board is shown below in Circuit Diagram 4. Top of the

board is a USB port to connect to your PC. When connected it will also supply

power to the board using the PC’s 12vdc power supply. A power connection is

also included to apply power to the board when development is complete. The

board headers were used for making connections easily to the other system

components.

Circuit Diagram 4:

Arduino Uno Board.

5 & 3.3 vdc
power

SPI interface to
the WIZ550io
module

Digital I/O Analog
Inputs

 - 23 -

Operational Details (Overview of project operation)

The main loop program running on the Arduino Uno board is listed below

(Code Listing 7). The AC voltage and currents are measured and accumulated

for one minute. After which the one minute averaged readings are sent to the

Exosite Portal Web Site.

AC Voltage Calculation:

VAC = (120.0 *(vacread2s - VACreading0)) / 374.0;
Where:

• vacread2s = ADC average two second reading.

• VACreading0 = ADC zero voltage crossing value (511).

• Using a 10-bit ADC: 120vac = 885 ticks, 0vac = 511 ticks.

AC Current Calculation:

A_amp = (100.0 *(A_ampread2s - VACreading0)) / 256.0;
Where:

• A_ampread2s = ADC average two second reading.

• VACreading0 = ADC zero voltage crossing value (511).

• Using a 10-bit ADC: 100amp = 767 ticks, 0amp = 511 ticks.

/*==*

* Main loop function.

===

/

void loop()

{

 VAC_Zero_Cross();

 Measure_VAC(); // Get VAC readings

 if (VAC_present)

 {

 VAC_Zero_Cross();

 Measure_AMPS_A(); // Get A Amp readings

 VAC_Zero_Cross();

 Measure_AMPS_B(); // Get B Amp readings

 // reading count

 vacreadcnt = vacreadcnt + 1;

 // accumulate readings

 vacread2s = vacread2s + RT_VAC_Reading;

 A_ampread2s = A_ampread2s + RT_A_AMP_Reading;

 B_ampread2s = B_ampread2s + RT_B_AMP_Reading;

 if (vacreadcnt > 1)

 {

 vacread2s = vacread2s / 2;

 A_ampread2s = A_ampread2s / 2;

 B_ampread2s = B_ampread2s / 2;

Code Listing 7:
Main Loop Routine to monitor AC voltage and current sensors.
- Every minute will send real-time data to the Exosite Portal Web Site.

 - 24 -

 }

 // make calculations and send data to web site.

 // Every 60 seconds - Get 2 seconds readings -> avg and send to web site.

 if (vacreadcnt >= Update_Int)

 {

 VAC = (120.0 *(vacread2s - VACreading0)) / 374.0;

 vacreadcnt=0;

 vacread2s=0;

 // Get Phase A AMP readings

 A_amp = (100.0 *(A_ampread2s - VACreading0)) / 256.0;

 A_ampread2s=0;

 // Get Phase A AMP readings

 B_amp = (100.0 *(B_ampread2s - VACreading0)) / 256.0;

 B_ampread2s=0;

 // write/read data to/from web site (Every 60 seconds).

 Connect_with_Exosite();

 }

 digitalWrite(WDT_ledPin, 0); // watch dog timer led

 delay(950);

 digitalWrite(WDT_ledPin, 1);

 }

}//loop

KW and KWH Calculations:

Watts are calculated by adding phase “A” and “B” amps together and then

multiplying by the AC voltage. Dividing by 1000 will convert the Watts to KWs.

This is performed every minute and sent to Exosite Portal Web Site.

Also, KWHs are calculated by accumulating the KWs calculated every

minute and sending this information to the web site every hour. See

Code Listing 8 below. Note the Exosite Portal Web Site can only read integer

values, so the data is converted to long integers. The values are multiplied to get

the same accuracy.

Total_Amps = A_amp + B_amp;

RT_KW = (VAC * Total_Amps) / 1000.0;

RT_KWH = RT_KWH_prev + (RT_KW / 60.0); // update every 60 seconds.

RT_KWH_prev = RT_KWH;

RT_KWH_Cost = RT_KWH * Cost_per_KWH;

 // convert to long value for web site.

 VAC_L = VAC * 10;

 A_amp_L = A_amp * 10;

 B_amp_L = B_amp * 10;

 Total_Amps_L = Total_Amps * 10;

 RT_KW_L = RT_KW * 1000;

 RT_KWH_L = RT_KWH * 100;

 RT_KWH_Cost_L = RT_KWH_Cost * 10000;

Code Listing 8:
Code snippet of KW and KWH Calculations.
- Calculations are located in the “void Connect_with_Exosite()” routine.

 - 25 -

The Completed Board Operation:

After the completed board is powered up and running, the WDT LED

(watch dog timer led) will start to blink, indicating the program inside the Arduino

board is running and the transformers and WIZ550io module is communicating

with the Arduino board. The VAC LED will turn “on” indicating that the AC voltage

is present and within range. The phase “A” and “B” LEDs will turn “on” when

current is detected. When the AC voltage is present, AC measurements are

taken every two seconds and one minute average readings are sent to the

Exosite Portal Web Site.

The WIZnet WIZ550io Ethernet Module Operation:

The WiZ550io module is the gateway to the internet and to the Exosite

Portal Web Site. This module will auto configure itself and will handle all internet

communications. Sending data to the web site is performed with minimal

commands and effort.

The Exosite Portal Web Site Operation:

To view the real-time data, log onto the web site dashboard and observe

the measurements updating in the widgets and charts. Also, to change the cost

per KWH, enter new costs from the web site.

 - 26 -

Operational Details (Photos of the Completed Assembly)

The completed project installed inside the Main AC Load Center:

• Note the cover can be safely re-attached to load center.

Ethernet Cable

AC Voltage

Transformer

9vdc Power

Supply

Phase “A” and “B” CTs

WIZ550io
Arduino

UNO Board

 - 27 -

Completed Board inside Main AC Load Center:

 - 28 -

Project Hardware Information (Hardware Parts List)
The major parts utilized in developing this project included a WIZnet

WIZ550io Ethernet Module, Arduino Uno Board R3, +9vdc power supply, AC

voltage transformer and AC current transformers (2 phases). Below is the

complete parts list for this project.

HEM Hardware Parts List:

Qty
Component

Name
Part Description

Part
Numbers

Manufacturer

1 U1 WIZnet WIZ550io Ethernet Module WIZ550io WIZnet

1 U2 Arduino Uno Board R3 DEV-11021 Spark Fun

1 PS1 +9vdc Power Supply 2173132 Jameco

1 PS2 AC-AC Voltage Transformer 101258 Jameco

2 CT1, CT2 0-200 AMP AC Current Transformer SCT-19-000 elecfreaks.com

2 LED1, 5 Green LED 697629 Jameco

2 LED3, 4 Red LED 2006713 Jameco

1 LED2 Yellow LED 697688 Jameco

4 R1-4 100 ohm resistor 690620 Jameco

5 R9, 11-14 10k ohm resistor 691104 Jameco

1 R10 100k ohm resistor 691340 Jameco

2 R8 470k ohm resistor 691500 Jameco

2 R15-16 47 ohm resistor 690540 Jameco

3 C5-7 10uF Capacitor 29891 Jameco

1 CAT 5 Ethernet cable. (15 ft) 201726 Jameco

3 2C cable connector (for transformers) CON-242 All Electronics

1 pack 6" Jumper Wires JMX6-100 All Electronics

 - 29 -

Project Hardware Information (Completed Project Schematic)

